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These lecture notes provide an introduction to the theory of so-called canonical representations.
a special type of (reducible) unitary representations. The simplest way to define them and to see their
importance is done in the context of the group SL(2, R), the group of 2 x 2 matrices of determinant one, see
[16]. We have chosen a class of groups, namely G = SU(1,n), n > 1. Notice that SL(2, R} is isomorphic
to SU(1,1). Canonical representations can be seen, generally speaking, as the completion of LY G/K)
with respect to a new G-invariant innner product, in the same spirit as the “complementary series” is
obtained from the “principal series” for G. Here K = SU(n). But this is only one (but important) point of
view, see scction 5. Canonical representations occur also when studying tensor products of holomorphic
and anti-holomorphic discrete series representations. This is explained in section 4. The connection
with quantization in the sense of Berezin is not treated in these notes because we will emphasize the
representation theory. On the other hand, Berezin has made a large contribution to the understanding
of canonical representations.

The main problem is to decompose the canonical representations intc irreducible constituents. This
is not an easy task. It has been done by Berezin [1] and, later, by Upmeier and Unterberger (15].
There are however, in both treatments, conditions on the set of parameters of the representations: only
large parameters are allowed. For small parameters (see [3]) an interesting new phenomenon occurs:
finitely many complementary series representations take part in the decomposition. We shall treat the
case ¢ = SU(1,n) in detail in these notes and try to illustrate all aspects of the theory of canonical
representations we have mentioned.

1. SPHERICAL FOURIER ANALYSIS ON COMPLEX HYPERBOLIC SPACES
The main reference for this section is [9].

1.1. Complex hyperbolic spaces and their bounded realizations

Let n > 1. Consider on C"**! the Hermitian form
[l’x?ﬂ:yoxo_?jlfl—"‘—gnl‘n- (1.1)

Let G = SU(1,n) be the group of (n + 1) x (n + 1) complex matrices which preserve this form and have
determinant equal to 1. The group G acts on the projective space P,(C) and the stabilizer of the line
generated by the vector (1,0, ...,0) is the compact subgroup K = S(U(1) x U(n)). Wecall ' = G/K a
complex hyperbolic space. X is, in addition, a Riemannian symmetric space of the non-compact type. of
rank one, and carries a complex structure, as we will see.

Let 7 denote the natural projection map

7 C*TI\{0} — Pn(C), (1.2)

sending each vector to the line generated by it.
The hyperbolic space X is the image under 7 of the open set

{z e C" [z, 2] > 0}.
On C* we have the ususal inner product
(ry) =0+ + Tt

with norm ||z|} = (z,2)!/%. Let

B(C*) = {z € C" : |lz]| < 1},
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the unit ball in C™! The space X can be realized as the unit ball in C*: the map from (1.3) to C", given
by

z—y with y, =z,z;! (1.8)
defines, by passing to the quotient space, a real analytic bijection of X onto B(C™). G acts on B(C™)

transitively by fractional linear transformations. If g € G is of the form g € (j d)’ with matrices

a(lx1),b(1 xn), ¢(nx 1) and d(n x n), then

9 y=(dy+c)({by) +a)! (17

where y and c are regarded as column vectors and

<b)y>:bly1+"'+bnyn- (18)
Clearly K = Stab (o).
An easy computation shows that
=0y 9 )=G0+a) 1= (2] (by)+a), (1:9)
L—1lg- gl = [L = [|ylI*] - 1(b, v) + a] 2 (1.10)
and _ o~
by ta=({ g y)+a) il g7t = (; 5) (1.11)

On the other hand, the absolute value of the Jacobian of the real analytic transformation y — g - y (y €

B(C")) is easily seen to be equal to
(5. ) + a] 2D (112)

If dy is the Euclidean measure on C7, then clearly
dp(y) = (1= |lyl|*) ="+ Vdy (1.13)
is a G-invariant measure on B(C").

1.2. Fine structure of SU(1,n)

Let J be the (n+ 1) x (n + 1) matrix diag {1,—1,...,-1}. For any complex matrix X of type
(n+1)x(n+1)weset X*=JX J.

The Lie algebra g of & consists of the matrices X that verify the relation

X+ X" =0, traceX =0. (1.14)

Z. 7 )
= < 1.1
<Z; Zs) (115)

4
with Z; and Z3z anti-Hermitian and Z, arbitrary, trace (Z; + Z3) = 0. Let 6 be the involutive automor-
phism of g defined by

These are the matrices of the form

6X = JXJ. (1,16)

Then 6 is a Cartan involution with the usual decomposition g = ¢+ p. Here b is the Lie algebra of K.
Let L be the following element of g:

0 0 1
L={0 0 o]. (1.17)
100

We have L € pand a = R L is a maximal Abelian subspace of p. We are going to diagonalize the operator
ad L. The centralizer of L in t is

v 0 0 :
m={{0 v 0 fu+u=0,veu(n-1), 2u+tracev = 0}. (1.18)
0 0 u
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‘Let a = 1. The nonzero eigenvalues of ad L are £a, £2a. The space g, consists of the matrices

0 =2 0
x=[: 0 -: (1.19)
0 2z 0
where z is a matrix of type (n — 1,1) and 2™ = —2".

The dimension of g4 is equal to my = 2(n — 1). The space gaq consists of the matrices of the form

w 0 —-w
X=10 O 0 (1.20)
w 0 —-w

with w+w = 0. The dimension of gz, is equal to my, = 1. We have g = g2 +g-o +a+m+ga + 20
Let A be the subgroup exp a. This is the subgroup of the matrices

cosht 0 sinht
a; = 0 1 0 (1.21)
sinht 0 cosht

where t is a real number. The centralizer of A in K is the subgroup M of the matrices

0
0 (1.22)
u

o O R
[«-BES A -]

with |u] = 1 and v € U(n — 1), u’det v = 1. The Lic algebra of M is m. The subspace n = g, + gaq I8 &
nilpotent subalgebra. Set N = exp n. This is the subgroup of the matrices

l+w-—1{z2] 2 —w+ [z, 7]

n(z,w) = z I —z ' (1.23)
) w—1iz,2] 2 1—w+ 3[z, 2]

with w4+ @ = 0 and with z a matrix of type (n — 1,1), z* —z' and if

.ot
&)
N

Zn z

then [z,2] = —Zhzg =T,
The composition law in N is the following:

n(w, z) - n{w', ') = n(w+w +Im(z,2], 2+ 2'). (1.24)

The subgroup A normalizes N:

a;n(z,w)a_, = n(e*w,e'z). (1.25)
Let 2p be the trace of the restriction of ad L to n:
1
p= §(ma + 2my,) = n. (1.26)

We have the Iwasawa decomposition G = KAN = NAK. Each g € G can uniquely be written as
g = kaygyn accordingly. One has the corresponding integral formula:

/f(g)dg:/ f(kayn)e* dkdtdn (1.27)
& KAN
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for f € D(G). This is also equal to

/NAK f(natk)e_2’°t dndtdk. (1.28)

Here dn = dzdw (n = n{z,w)) and dk is the normalized Haar measure on K. Observe that NA
parametrizes X — G /K. Moreover, we have the Cartan decomposition G = KA K where

Ay ={a; : t >0}, (1.29)

and, after dg is normalized according to (1.27), the corresponding integral formula

/Gf(g)dg:/K/ooo/Kf(ka,k’)é(t)dkdtdk’. (1.30)

L ma (Sinh 2t
I‘(n)(smht) (——

Here

5(t) = 2

ymae (1.31)

1.3. Spherical functions, inversion and Plancherel formula
For s € C let
905(!]) :/ e(-“‘ﬁ)t(g_lk)dk (g € G) (1.32)
K

be the zonal spherical function with parameter s, in integral form, according to Harish-Chandra. It is
known that ¢,(g) = ¢—s(g9) = ¢s(97*). Furthermore let c(s) denote Harish-Chandra’s c-function:

L'(s)

()2

e(s) =T(n)2°7°

(1.33)

For f € D(G//K), the space of bi-K-invariant, compactly supported C*-functions on G, we define its
spherical Fourier transform as

f(S)I/Gf(g)sO-s(g)dg (s€C). . (1.34)

f is a function of Paley-Wiener class, and f is even in the argument s. One has:
Inversion formula:

dy
L

fo = [ " Pl penle) (9€G), (135)

and
Plancherel formula:

240 = ¢ = Pl dy
Lirds=e [ e (1.36)

where ¢g = 2277 2T(n)/a 1.
The function ¢(t,s) := ¢s{a,) is the unique solution of the ordinary differential equation

2

dy cosht cosh2t . dy 9 5
a2 e S e el g < O (1.31)
that satisfies ©(0,s) = 1. So
o(t,s) = gFl(s—;p,-s;—p;p; —sinh? ). (1.38)

There is another solution for ¢t > 0, ®(¢, s), which has the asymptotic behaviour e(s=P)t a5t — 0o and is
given explicitly by

—s—p+2 —s5+p

®(t,s) = 2°77 (sinht)* ™ 2 Fy( ;1—s; —sinh™%¢) (1.39)

2 2
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for s #1,2,3,.... If s is not an integer, then
o(t,s) = c(s) P(t,s) + c(—s)D(t,—s) (t>0). (1.40)

Moreover, as t approaches 0, ®(¢, s) and %(t, s) have the following asymptotic behaviour:

(t, 5) ~ {38 fo;t" g nn#:ll ’ (1.41)
0%(s,1) (2-2n)C(s)t'= ifn#£1
a {0(5)1/2 © ifnil, (1.42)

for a certain function C of s. Notice that ¢ and @(—gf—’t) are integrable with respect to the measure §(¢)d¢
on (0,00) whenever Res < —p.
"1t easily follows from (1.36) that for ¢ > 0:
dy
c(ip)

fa)=co [ Flin (e —in) (1.43)

Since f is of Paley-Wiener class and ¢(s)™! of polynomial growth (see (1.33)) for Res > —1, one has in
addition, by Cauchy’s theorem:

fa) = ¢ /_ flo+ip)o(t, ~o — ip) ;‘(;d_f—w) (144)

for o > —1,¢t > 0and f € D(G//K).
2. CANONICAL REPRESENTATIONS

2.1. Definition of canonical representations

For A € R and g € G we set
Ualg) = (1= [lyl*)* (2.1)

where y € B(C™), y = g -o. Clearly ¢ is a bi-K-invariant continuous function on G. Observe that

N

¥a(a;) = (cosht)™2* (t € R). An easy computation shows that

L [ =a=E)t
o g”‘{u—(yzzn [1—<z,y>}} (22)

ifz,y€e B(C"),z=g1-0,y=g2-0.

Let us denote this expression by Ba(y,z). By is called a Berezin kernel of X. Since products
and (uniform) limits of positive-definite kernels are again positive-definite, we easily get, by expanding
[1 —(z,y)]~* into a power series:

-G = () G (2.9

m=0

with ("m’\) = (“'\)(—’\_125'!'(_)‘—'"“), that B, is a positive-definite kernel for A > 0. Or, otherwise said,
2y 1s a positive-definite function for A > 0.

Let 7y denote the unitary representation of G naturally associated with ¢ or Bj.

We call the w5 (A > 0) canonical representations after Vershik, Gel’fand and Graev {16] and we shall

study in this section their spectral decomposition in detail.

2.2. Spectral decomposition

The function ¢ is the reproducing distribution of 7 in the sense of L. Schwartz, see [2]. We shall
determine the integral decomposition of ¥ into (elementary) positive-definite spherical functions. It is
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well-known (see [11]) that the functions ¢, defined in (1.32), are positive-definite if and only if s is purely
imaginary or —p < § < p.

By (1.13), the function ¥x is actually a function in L(G) for A > p, or even for Re X > p, since ¥,
is well-defined for complex A too. So in this case (Re A > p), it suffices to determine the spherical Fourier
transform ax(p) of ¥a:

ax(p) = /wa(g) p-in(g) dg. , (2.4)

The computation of ax(x) is surprisingly simple. Applying the Cartan decomposition G = KA K, (1.30)
and (1.39), we get by making the change of variable z = sinh?t,

™ [ —ip4p ip+ A ne
i = oy [ oA B ) 17 @9

This expression is by [7], 20.2 (9) equal to

L TO+ B2 T + =572)

ax(p)=m 0L (2.6)
We may, in particular, reconclude that ¥y is a positive-definite function for A > p.
Moreover - ; .
o L
w,f=/¢nggd9=0/axﬁfzu——.—— 21
( ) o ()() 00 ()()lc(lll)l?‘ ( )

for all f € D(G//K). Here ¢g is as In (1.35).

We will now describe the decomposition (2.7) in another way, in order to gain insight how to proceed
in the case 0 < A < p, where %y is still positive-definite.

We apply (1.44). The function & satisfies:

(¢, — — ip)[[Ua(0)(2) £ Coe™ 7R (28)

for some positive constant Co and ¢ large. Thus for ¢ and A such that 0 +2ReA > p

LN d
(= [ Florubiori oy (29)
where

ba(s) = /Ooc O(t, —s) wa(t) 8(1) dt. (2.10)

For Re A > p we have:

ax(pn) = /: a () [e(ip) (1, ipr) + c(—ip) (2, —ip)]6()dt
= c(ip)ba(—ip) + c(=ip)or(in)- (2.11)

We will now take a closer look at the function b. Since ®(t, —s) is analytic in s for Re(s) > —1, it 1s
immediately seen that b,(s) is analytic in s on V) = {s|Re(s) > max(p—2Re}, —1)}. We will consider
the problem of analytic continuation of by(s).

Fix A > 0 and let C(s) = 2° 77" /T(n). Using (1.39) and making the substitutions z = sinh ™%t and
£ = y/(1 - y), we get |

= s—p+2 s+ sy -
b,\(S)ZC(S)/ 2171(9——;———,5—2—8;1—{—s;-—:r)a:—;l‘kk 1+ =) A
0
! s—p+2 s+ - _ —stp=2
A e e M U

0 -y

(2.12)
Applying the relation
zFl(a,b;c;z):(1—2)‘“2F1(a,c—b;c; ;%) (2.13)
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(cf. [8], 2.1.4 (p. 64)) yields

1

—p+2 s—p+2 .

() =€) [ 2R (R T )y (214)
0

By substituting the series expansion

2Fi(a,b;c2) = Z (21)1(?,)1 2 (el < 1) (2.15)
=0

and taking care of the possible singularity in y = 1 (in case n = 1) we obtain

Z(—ﬁ+1 . 1 516
Gl SEarl (210

This series is absolutely convergent for s # —1,—2,...and s # si(A\) = p—2A-2{ (I =0,1,2,...), since
the terms are majorated by {~1=% for some & between 0 and n, for I large. This can easily be seen by
using Euler’s limit formula for the gamma function:

n!n?

I'(z) = lim

Jim oS (2.17)

Thus by, has a meromorphic extension to C with polesins = s(A) (! =0,1,2,.. )Jand s = =1,-2,-3,....
The residues in s;(A) are equal to

22/\+21—2p+1 " (1 I Y 1)2
. ! , (2.18)
I'(n) (p—2x =20+ 1) 1!
if si(A) # —1,-2,-3,.... An easy observation shows that these residues are strictly positive for A > 0

for all values of [ such that s; > 0.

Consider the relation (2.11) again. The explicit expression for ax shows that for any fixed u # 0 in
R, A — ax(u) depends analytically on A for A in some strip around the positive real axis. So does the
right-hand side of (2.11). Thus this relation actually holds for all 4 # 0 in R and A > 0.

Let ®_, be the bi-K-invariant function on G defined by ®_;(a;) := ®(t, —s) fort > 0. The definition
of by can then be reformulated as

bA(s):/Xy’)A(z)CD_s(r)d:c (2.19)

for s € V. Formula (1.30) together with (1.41), (1.42) shows that the integral exists for those s. Let us
define the differential operator Ay on X = G/K by

Ay = (A—i—d)\) (220)

with ey = —1/(4A?), d) = —4A(A — p) and A the Laplace-Beltrami operator of X"
A direct computation using the explicit form for vy yields

Axva = amr (2.21,

' / Ava(z) P (v)dz
.

= Co(s) +/X1//,\(1‘)A(I)_S(I) dr = Co(S) (S —p )b,\( ) A (222/

for all A > 0. Fix A > 0. One has

for all s € C such that Re(s) > p — 2X with

Co(s) := ]:iff} Pa(a) 6_(1)

= (L =) 8(0). } (2.23,
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This limit can easily be computed for Re (s) >0 (cf. [9], Ch. IV, section V, §2, p. 415-416) and is equal

to
22—2p7rn

RS (OR

- 5¢(s). (2.24)

For A > 0 and s € Va N {Re(s) > 0} we obtain
b/\+1(S) :/ A,\I/))\((L‘) (D_S(.’L') dz
x

= ea{Cols) + (52 = (p — 2)?) ba(5)). (2.25)

Because Co(s) is analytic for Re(s) > —1, this relation can be used to extend by to Re(s) > —1 by
iteration. Since c(s) and by¢x(s) remain bounded as [s| — oo in the strip 0 < Re(s) < p for sufficiently
large k € N, it is now easily seen that b,(s) remains bounded too when |s| — oo in that strip. We thus
have:

Proposition 2.1. Let A > 0. The function b)(s), defined for s € Vi, has a meromorphic extension
to C with poles in 51(A) = p—2XA =20 ({=0,1,2,...) and —1,-2,-3,..., given by (2.16). The residues
in s;(A) are equal to

22A+21—2p+17rn (1 — )= 1)12

I'(n) (p—2x=2+ 1)1V
provided s;(X) # —1,-2,-3,.... Moreover, by remains bounded as |s| — oo in the strip 0 < Re(s) < p.
Fix A > 0. Let f € D(G//k) and consider the function

gy 8§ —cCo

f(s)ba(s)

c(s)
The function gy is meromorphic for Re(s) > 0 with simple poles in 5; = s;()), { such that s; > 0.
Let vg be the contour determined by the rectangle given by the points &R and p & iR. Since f is of

Paley-Wiener type and b, remains bounded as |s| — oo in the strip 0 < Re(s) < p, integrating g over
yr and letting R tend to infimty yields

< ba(ip)

() =27 5 e Nrer [ 2 o (2.26)
1,51>0 -
for A > 0. Here we used relation (2.9) with ¢ = p and
ri{A) ! Re ba(s) (2.27)
;= ———— Res,=, bi(s). A
! coc(st) > A

Thus we finally obtain, by using (2.11),

dy

T (2.28)

) =2 3 n) (e ) oo | " (i) (i f)

1,51 >0

for all A > 0. So, in particular, we pick up complementary series representations in s = s;(A).

Theorem 2.2. Let A > 0. If X > p/2, mx decomposes into a direct integral of principal series
representations. If 0 < X < p/2 the specirum of wy has a discrete pari consisting of finitely many
complementary series representalions. The conlinuous part consists of principal series representations.

3. ASYMPTOTIC BEHAVIOUR OF THE CANONICAL REPRESENTATIONS

In this section we consider the asymptotic behaviour of 7y (or %) as A tends to infinity. Therefore
we apply an alternative meaning of ¥,. We refer to [10].
Consider on {z € C**! : [z,z] > 0} the Riemannian metric

[dz, dz]

[=, 7]

ds® = —

. | (3.1)
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This metric is invariant under ¢ — Az (A € C, X # 0) and thus gives a Riemannian metric on X' which is
invariant under G. Corresponding to this metric we have a G-invariant second order differential operator,
the Laplacian A, which we already met in section 2. Let 7 be the map defined in (1.2). If f is a function

of class C? on X, we set f: fom, so that fis defined on the open set
{z €T : [z,2] > 0} .
and satisfies f(/\:z:) = f(z) (A € C, X # 0). We have

Af = [z,2)AT (3.2)

where A is the pseudo-Laplacian associated with the pseudo-Euclidean metric ds? = —[dz, dz] on C*t!.
Consider also on the set {x € C**! : [z, z] > 0} the function @ defined by

~ |7~‘0|2

Qz) =

(3.3)

[z, 2]

Q satisfies é(tz) = @(av) (t € C, t #0) and therefore Q = Q o for some function Q on X. Q has the
following properties:

e () is invariant under K,

e () is real analytic,

e Q(z) > 1,

o ( has a non-degenerate critical point 2% = ¢K; the Hessian of Q at z° has signature (2n,0),

e Q(z) =1t (t > 1)is a K-orbit on X.

Let F be a complex-valued function on R of class C?. Then

A(FoQ)=(LF)oQ (3.4)
where L is the ordinary differential operator
d? d

with a(t) = 4¢(t — 1), b(t) = 4[{(n + 1)t — 1]. This follows easily from (3.2).

Recall that D(X) is the space of complex-valued C*-functions on A" with compact support. Iix an
invariant measure dx on X, corresponding to the Riemannian metric. If ¢ is not a critical value of @ (so
t # 1), we can define the average M;(t) of a function f € D(X) over the surface {Q(z) = t} by means of
the formula

/ F(Q(z)) f(e)dz = /oo F(t) My (1) dt (3.5)
X n

for any continuous function I on R.
The function M has a singularity at the critical value t = 1 of ). More precisely

Mi(t) =Yt —-1)(t—-1)"""e(t) (3.6)
with ¢ € D(R). Here Y is the Heaviside function: Y (t) = 1 for t > 0, Y{(t) = 0 for t < 0. Moreover

¢ f(2°) = (1)

where ¢ = 7 /T'(n). Since Q is a K-invariant function, we can associate with @ a G-invariant kernel Kq
on A x A", with

z1,z0)z0, T

[z1,22] [22, 1] (3.7)

P _
Yoz ee) = e 2l

(ri.20 € {z € T : [z, 2] > 0}).
One easily verifies that this kernel corresponds on B(C™) x B(C") to the kernel

[1-(y, 2] - (zy)]
= IWIPT = 11IP] | (3.8)
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if 2, — y, x3 — 2°(y,z € B(C")). Therefore, ¥i(g) = Q(g)~* for all ¢ € G. This interpretation of L3
will be of great help in finding the asymptotic behaviour of ¥, as A — co.
Consider the distribution
f- [ a@™
X

[ e fayde = [T a1y towar
X 1

(f € D(X)). By (3.6) we get

Observe that this expression is an entire analytic function of A. For k=0,1,2,...0ne has
/ t—X(t_l)n«}—k—ldt:F(/\mn_k)l(n—}'k)’
1 I(Y)

for example for Re A > n + k. Write

o) = 1)+ (¢ - D)+ L

with [¢(t)] < max; lo(®)(s)|, and consider the distribution T given by

XY BEPINSS ) R
F(A—n)F(n)cQ( )= W"F(/\—H)Q( )
for A — oc. We get
A, ) = #1404 55 (1) 4 2" (D)l + 1)+ Ol55 (39)

as A — co.
Let L' denote the transpose of L with respect to dt. We have Max; = L'k My for all k € N. A

computation yields
L[t =1 (0] = (t= )" H{[(n+ )t = 4] (1) + 4t = 1D " (D)

and from this equation one can derive that

cAf(") = an (1),
eA*f(2%) = 16n(n + 1) [7"(1) + &' (D).

It is an easy exercise to arrive at

¢'(1) = X;Af( %), (3.10)
¢%m:ﬂ%£17ﬁawww—4w+wAﬁﬁn. (3.11)

Substituting (3.10) and (3.11) into (3.9) yields

(15.1) = s + 5 51°)

0 L - ¢
o (A6 40+ DAL} +0(55) (A= ) (3.12)

So Ty — 6 as A — oc. In terms of Berezin quantization (cf. [1], where A = 1/h with h denoting Planck’s
constant) it means in particular that the correspondence principle is true.
It is clear that there is no obstruction in determining higher order terms of the asymptotic expansion,

due to our method.
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4. TENSOR PRODUCTS OF HOLOMORPHIC AND ANTI-HOLOMORPHIC DIS-
CRETE SERIES

4.1. The space L*(G/K,I)

Denote by x; (I € Z) the character of K given by

Xi (8 2) —d (4.1)

where |a| =1, d € U(n), adetd = 1. Let py = Indxyg x; and V} the space of p;. So f € Vj if

(1) f: G — C is measurable,
(i1) f(gk) = x:(k=")f(9),
() 11 = [ 1F(9)] die@) < o0, where 5= g

Here dp(g) is the invariant measure on G/K ~ B(C"), see (1.13). Instead of V} one also uses the
notation L?(G/K,l). We shall identify V; with a space of functions on the unit ball B = B(C") in C".
Recall that G acts on B, by (1.7), K = Stab (0) and gK € G/K corresponds to g - 0. Now define

Af(g) = d' f(g) (4.2)

for f € LX(G/K,l), g = <(Z Z) Then Af(gk) = Af(g) for all k € K. So Af is defined on B and one

has

171 = /B AF()E (1= 122 dus(2),

with du(z) as in (1.13). Let H; denote the Hilbert space of all measurable functions ¢ on B such that
[ I (= 1) due) < o (4.3)
‘H; is a G-space; G acts unitarily in H; by m;, given by
m(9)e(z) = e(g™" - 2) ({b,2) + a) ™

. b . . . -
ifg™ = (Z d)' A 1s a unitary intertwining operator between p; and .
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4.2. The holomorphic discrete series; Fock spaces

For A € R consider the Fock space F, of holomorphic functions on B satisfying
G = [ 1P (0= Y dute) <0 (44)

This space is non-trivial for A > p (p = n), since Fy contains the function which is identically 1 in this

case. One has
7T.ﬂ

3 = G0 O (4.5)

Moreover, Fy is a closed subspace of L*(B,dua), hence a Hilbert space, where dpx(z) = (1- 2| dp(z).
It also has a reproducing kernel, namely

By w) = DA O (46)

7rT'L

It is also a unitary module for the action of the universal covering group G of G; for integer A (A > p) it
is even a G-module: a holomorphic discrete series representation of scalar type. The group G acts by

d-z+c¢

ma(9)f(2) = f(m——

) (b.2) +a)7?, (4.7)

c d

gl = (a b). Let us denote by Fx the space of complex conjugates of elements in F,. It consists of
anti-holomorphic functions and gives rise to an obvious unitary action Ty of G as well. So

_ d-z4+c¢ 72 .
Ta(9)f(2) Zf(m)((buz)+a) (4.8)

ifg~! = (‘; 3) fEFANEL. For xeN(A> p) we get part of the anti-holomorphic discrete series.

4.3. Tensor products

Consider the Hilbert space tensor product Fr@2Fx, with A > p. The group G acts diagerally. Tt
turns out that we actually have a G-action, which for integer A is given by

o () @) = flg7t -2) @ ler - w) (@ (b, 2) 7 (a+ (bow) (4.9)

o b
o5 = <i d)'

Let A, denote the bilinear map, defined on tensors in Fr@2Fa by
£(z) ® Flw) — F(F(2) (1= =17 (4.10)

Then, restricting A, to polynomial functions, A, is densely defined with image in ‘Ho. Furthermore,
according to J. Repka ([14], Proposition 4.1):

e A, has trivial kernel and dense image,

e A, intertwines the G-actions on F®2Fx and 7o,

e A, is closed.

Let Ay = \A,\A‘;\P/? U, be the polar decomposition of Ay. Then Uy is a unitary equivalence between
the G-spaces Fy&®2F » and Hy ~ LYG/K).

Actually A, can be extended to a bounded operater from F®,F into Ho with HAAHQ < 1/eq,
where ¢ = ||1]|3. Indeed, functions F(z, w), holomorphic in z, anti-holomorphic in w, such that

/B/B |F (2, w)|* dpa(z) dpa(w) < o0,
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are general elements in the Hilbert space FaRaFa. Clearly for such functions F,

F(z,1) = /B Ex(w, ) F(z, w) dua(w), (4.11)
therefore,
AFE) = [ Balwn ) Pz w) i) - (1= )
Hence
PGP S [ 1B P i) [ 1P dun(e) (1= )
So

IANFIF = [ AP dute) < 1P

4.4. The adjoint of A,. The Berezin kernel

Let F(z,w) be holomorphic in z, anti-holomorphic in w, and belonging to Fr@2Fy, or LYB x
B,dpy ®dpy). Let h belong to L*(B,du). We shall determine an explicit expression for A3 h. It is clear
that A} h is in Fa®2Fx, so A} h(z, w) is holomorphic in z and anti-holomorphic in w. One has

(A3 b, F) = (h, ALF)

/ / 2) Ex(z, w) F(z,w) (1= 122" dua(w)du(z).
So A} h is the projection of the function
(z,w) — h{z) Ex(z,w)

onto Fy@,F . The above function is in L?(B x B,dux ® dpy). The orthogonal projection, call it E| is
given by

(z,w) //EA w' w) Ex(z,2") F(z',w') dpa(2")dpa(w'). (4.12)

Hence

Ashle ) = [ Ba(e,#) Bl ) A2 din().
Define for A > p and f,g € Ho = L*(B,dp):
(f,9)x = (AN A3 S, 9). (4.13)
This form is clearly (strictly) positive-definite. More explicitly:

Ay AL f(z) =

LEAaAEAA»ﬂ/wmuUu-WWV

So Ay A3 is a kernel operator with kernel

Ty g EGICE IR
Bz =a {U—QJNU—VQN}' (1

This is again the Berezin kernel (up to a factor); it is G-invariant, positive-definite, and defines a bounded
Hermitian form on L?(G/K) for A > p. Notice that the Berezin kernel is given by

E\(z, ) Ex(Z', 2)

(1.15)

Ex(z,z) Ex(2', 2")
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5. " MAXIMAL DEGENERATE REPRESENTATIONS OF
SL(n+1,C)

5.1. Definition of the representations

Let G = SU(1,n) and G. = SL(n + 1,C), a complexification. Denote by K, the subgroup
K. =S(GL(1,C) x GL(n,C))

of G, and set U = SU(n + 1), K = S(U(1) x U(n)). Let P* be the two (standard) maximal parabolic
subgroups of G, consisting of upper and lower block matrices respectively:

) )

with a € C*, g (c)) € K., b arow (column) vector in C*. For p € C, define the character w, of P*
by the formula:

wu(p) = lal¥,
where p € P* has one of the forms (5.1). Consider the representations Wf of G. induced from P*:

ﬂf =Indwz,. (5.2)

Let us describe these representations in the “compact picture”. One has the following decompositions:
G=UPt=UP~, (5.3)

which we call [wasawa type decompositions. For the corresponding decompositions ¢ = up of an element
g € G., the factors p and u are defined up to an element of the subgroup UNPT* = UNP~ = UNK, = K.
The cosct spaces G./PE can be identified with the coset space U/K. Set

S={zeC™ :|lz]* =1},

which clearly can be identified with SU(n + 1)/SU(n) via u — uep (v € SU(n + 1)).
~ Let us denote by V the vector space of C®-functions ¢ on S satisfying

p(As) = ¢(s) (5.4)

for all A € C with [A| = 1.

V can be seen as the representation space of both ﬂ'j— and 7. In fact "rj[ = m, o7 where 7 is the
Cartan involution of G.: 7(g) = (¢")~ 1.

The group (. acts on S; denote by g - s (g € G¢, s € S) the action of g on s:

7 Gl (59)
We have for ¢ € V:
T (9)e(s) = elg™" - s) lg7 (s)]I* (5.6)
In a similar way we have: '
mH(@)p(s) = e(r(g™") - s) I (g™ )sl*. (5.7)

Let (| ) denote the standard inner product on L%(S),

(o) = /5 () U(5) ds. (5.5)

Here ds is the normalized U-invariant measure on S. This measure ds is transformed by the action of
g € G, as follows:

ds = |jg(s)]| 7>t Vds, F=g-s. (5.9)
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1t implies that the Hermitian form (5.8) is invariant with respect to the pairs

- + o+
(7 ”—ﬁ—z(n+1)) and (], 7r—';7—2(n+1))'
Therefore, if Re u = —(n+1), then the representations rf arc unitarizable, the inner product being (5.8).

5.2. Intertwining operators and irreducibility

It is an interesting problem to determine the complex numbers u such that 7% is irreducible, and in
casc it 1s reducible, to obtain the composition series. We will not persue this problem here. We refer to
(6] where a similar method is used. It turns out that # is at least irreducible if 4 ¢ Z. Let us turn to
intertwining operators.

Define the operator A, on V by the formula

Aupls) = [ 15,0177 Vgl (5.10)
.

This integral converges absolutely for Rep < —2n — 1 and can be analytically extended to the whele
yi-plane as a mereomorphic function. It is easily checked that A, is an intertwining operator

AumE(g) = 75(9) Ay, g € G, (5.11)

with g = —p — 2(n + 1).

The operator A_,_2(ny41)0 Ay intertwines Wf with itself and is therefore a scalar ¢(p), independent
of the £-sign. In general ¢(;) will be a meromorphic function of g. It can be computed using A-types,
see e.g. [6], §1. It turns out that

() = et — 2 + 1))
It turns out, in addition, that only the 7% with Reu = —(n + 1) arc unitarizable (sec again [6], §1).
5.3. Restriction to GG

Consider the diagonal matrix J = diag {1, —1,...,—1}. Then
G={geCG. g =Jg T} (5.12)

So the Cartan involution 7 of G. restricted to G is given by 7(g9) = JgJ (¢ € G). Consequently, 7r;f is
on G the equivalence is given by ¢ — F¢ with

equivalent to

Ee(s) = p(Js) (5.13)
for ¢ € V.
Now consider the action of G on S given by (5.5). There arc 3 orbits, given by
[s,5] > 0, [s,5] =0 and [s,s] < 0. (5.14)
All three orbits are invariant under s — As with A € C, |A| = 1. Call 0,0, O3 the corresponding

G-orbits on S/ ~ where s ~ s’ if and only if s = As’ for some A € C, |A| = 1. Then we have:

O, ~G/K via g - g€, (5.15)
Oy~ G/MAN via g— g (eo+en), (5.16)
O3 ~ G/S(U(1,n~ 1) x U(1)) via g g-en. (5.17)

For the subgroup M AN (a minimal parabolic subgroup of (7) sce section 1.2
Let ¢ be a C*-function with compact support on [s, s] # 0, satisfying (5.4). Sct

¥(s) = o(s) Ils, s}/, (5.18)

Then 3 satifies the same condition (5.4). Moreover,

(o™ o) llg ™ ()1 Ils, )=/

7. (9)e(s) |5, 5]

W(g™t - s)

[—-l/?u.
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So the linear map % — 1 intertwines the restriction of 7 to G with the left regular representatidn of G
on D(G/K) and D(G/H) respectively where H = S(U(1,n — 1) x U(1)).
A G-invariant measure on O; U Oz 1s given by

ds
So, if we provide D(S) with the inner product on [s, s] # 0 given by
(o1, ea) = [ ()72l s, 7=V, (5.20
s

then 7 becomes unitary, if we restrict it to G. From now on we shall only consider the restriction of T
to G and call it R,. Clearly R, is equivalent to R,,. The intertwinig operator becomes

Aupls) = / s, 6|7+~ (1) (5.21)

Observe that A, is defined on [s,s] > 0 for all 4, provided ¢ has compact support in this open set. Then
A, is a C*°-function on this set (non-necessarily with compact support). On [s, s] < 0 one still has to
deal with analytic continuation in g, since convergence of the integral is not garantueed for all .

For ¢1, w2 € V and p € R, consider the Hermitian form

(o1, Auga) = /5 /5 s, 11]7# 2" D (5) a(D)dsdt. (5.22)

This form is clearly invariant with respect to R,. Applying the linear transformation (5.18) on the open
set [s, 8] # 0, we get the following:

(o, W):/S/Sm(S) Pa(t)

Now restrict to [s, s] > 0. Then

E4+(n+1)
dv(s)du(t). (5.23)

[s,s][¢,¢]

[s,t][t, 5]

is the Berezin kernel on D(G/K), see (3.7).

NOTES

e Canonlcal representations have been introduced for classical Hermitian symmetric spaces by Berezin
and later, in a different context, by Vershik, Gel'fand and Graev for SL(2, R) (see {1], [16]).

e A more conceptual treatment for Hermitian symmetric spaces in the context of Jordan algebras
has recently been given by Upmeier and Unterberger [15].

e An extension to hyperbolic spaces, also for small values of the parameters, and for line bundles
over these spaces, is due to Hille and van Dijk [3], [4], [12].

e Canonical representations for para-Hermitian spaces were proposed and introduced by Molchanov
[13].

o A thorough treatment of the rank one para-Hermitian space SL(n,R)/GL(n — 1,R) is due to van
Dijk and Molchanov [5], [6].

The generalization to para-Hermitian spaces follows the scheme of section 5. which was proposed
by Molchanov.
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